Extraction of Phosphate from Polluted Waters Using Calcium Alginate Beads Doped with Active Carbon Derived from A. aspera Plant as Adsorbent

نویسندگان

  • Ravulapalli Sujitha
  • Kunta Ravindhranath
چکیده

An adsorbent prepared by entrapping active carbon derived from the stems of Achyranthes aspera plant in the calcium alginate beads (CABAA) has been investigated for its adsorption nature towards the removal of phosphate by varying various physicochemical parameters. Surface morphological studies are made using FTIR, XRD, FESEM, and EDX. The sorption mechanism is analyzed using Freundlich, Langmuir, Dubinin-Radushkevich, and Temkin adsorption isotherms. The adsorption kinetics is found to follow the pseudo-second-order model. Thermodynamic parameters are analyzed and found that the adsorption is endothermic and nonspontaneous in nature. The maximum amount of phosphate adsorbed onto CABAA is found to be 133.3 mg/g of active carbon and, furthermore, the adsorbent is highly selective. The methodology developed is successfully applied to polluted water samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Lead from Water Using Calcium Alginate Beads Doped with Hydrazine Sulphate-Activated Red Mud as Adsorbent

Calcium alginate beads doped with hydrazine sulphate-treated red mud are investigated as adsorbent for extracting lead ions from water using batch methods of extraction. Different extraction conditions are optimised for maximum lead extraction. Substantial amount of lead is removed, and the adsorption ability is found to be 138.6 mg/g. Surface characterization using FTIR, EDX, and FESEM confirm...

متن کامل

تولید بذر مصنوعی از طریق کپسوله کردن نوک شاخه ها در دو هیبرید ایرانی آفتابگردان (Helianthus annuus hyb. Azargol and Farrokh)

Synthetic seeds can use as tool for applied biotechnology methods for improve the quality and increase the production of sunflower. Shoot tips excised from in vitro proliferated shoots were encapsulated in calcium alginate beads. The best gel complexation was achieved using 3% sodium alginate and 100 mM CaCl2.2H2O. Maximum percentage response for conversion of encapsulated shoot tips into plant...

متن کامل

The Perlite-calcium Alginate-activated Carbon Composite as an Efficient Adsorbent for the Removal of Dyes from Aqueous Solutions

To remove dyes from wastewater, the perlite-calcium alginate–activated carbon (PCA) composite was prepared by a simple method. This composite was characterized by FTIR, XRD, SEM, and BET techniques. A high capacity of PCA was observed for the adsorption of some dyes such as methylene blue (MB) and methyl orange (MO) from aqueous solutions (1111 and 909 mg g-1). The best results were achieved at...

متن کامل

Sodium Alginate Magnetic Beads for Removal of Acid Cyanine 5R from aqueous solution

Introduction: The water pollution remediation is a challenging topic in environmental science. The purpose of this study was to achieve the practical methods for evaluation of the efficiency of latest modern technologies in order to remove dyes from the aqueous solution. Methods: In this experimental study, we used nanotechnology technique for production of the Sodium alginate magnetic be...

متن کامل

Boron removal from aqueous solutions using alginate gel beads in fixed-bed systems

BACKGROUND A column sorption study was carried out using calcium alginate gel beads as adsorbent for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of pH, initial concentration of boron, feed flow rate, adsorbent mass and column diameter. The breakthrough capacity values and adsorption percentage of calcium alginate gel for boron were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017